Статистический анализ многомерный - définition. Qu'est-ce que Статистический анализ многомерный
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Статистический анализ многомерный - définition

ОТРАСЛЬ ЗНАНИЙ О СБОРЕ, ИЗМЕРЕНИИ, АНАЛИЗЕ, ТОЛКОВАНИИ И ПРЕДСТАВЛЕНИИ ДАННЫХ
Статистик; Статистические методы; Статистический анализ; Статистический метод; Анализ статистический
  • [[Гистограмма]] (метод графических изображений)}}

Статистический анализ многомерный      

в широком смысле - раздел математической статистики (См. Математическая статистика), объединяющий методы изучения статистических данных, относящихся к объектам, которые характеризуются несколькими качественными или количественными признаками. Наиболее разработана часть С. а. м., основанная на допущении, что результаты отдельных наблюдений независимы и подчинены одному и тому же многомерному нормальному распределению (См. Нормальное распределение) (обычно именно к этой части применяют термин С. а. м. в узком смысле). Иными словами, результат Xj наблюдения с номером j можно представить вектором

Xj = (Xj1, Xj2,..., Xjs),

где случайные величины Xjk имеют Математическое ожидание μk, дисперсию (См. Дисперсия) σ2k, а коэффициент корреляции (См. Корреляция) между Xjk и Xjl равен ρkl. Вектор математических ожиданий μ = 1,..., μs) и ковариационная матрица Σ с элементами σk σl ρkl, k, l = 1,..., s, являются основными параметрами, полностью определяющими распределение векторов X1,..., Xn - результатов п независимых наблюдений. Выбор многомерного нормального распределения в качестве основной математической модели С. а. м. отчасти может быть оправдан следующими соображениями: с одной стороны, эта модель приемлема для большого числа приложений, с другой - только в рамках этой модели удаётся вычислить точные распределения выборочных характеристик. Выборочное среднее и выборочная ковариационная матрица

[где обозначает транспонированный вектор , см. Матрица] суть оценки максимального правдоподобия соответствующих параметров совокупности. Распределение нормально , а совместное распределение элементов ковариационной матрицы S, т. н. распределение Уишарта, является естественным обобщением "хи-квадрат" распределения (См. Хи-квадрат распределение) и играет значительную роль в С. а. м.

Ряд задач С. а. м. более или менее аналогичен соответствующим одномерным задачам (например, задача проверки гипотез о равенстве средних значений в двух независимых выборках). Другого типа задачи связаны с проверкой гипотез о независимости тех или иных групп компонент векторов Xj, проверкой таких специальных гипотез, как гипотеза сферической симметрии распределения Xj и т.д. Необходимость разобраться в сложных взаимосвязях между компонентами случайных векторов Xj ставит новые проблемы. В целях сокращения числа рассматриваемых случайных признаков (уменьшения размерности) или сведения их к независимым случайным величинам применяются метод главных компонент и метод канонических корреляций. В теории главных компонент осуществляется переход от векторов Xj к векторам Yj = (Yj1,..., Yjr). При этом, например, Yj1 выделяется максимальной дисперсией среди всех нормированных линейных комбинаций компонент X1; Yj2 имеет наибольшую дисперсию среди всех линейных функций компонент X1, не коррелированных с Yj1 и т.д. В теории канонических корреляций каждое из двух множеств случайных величин (компонент Xj) линейно преобразуется в новое множество т. н. канонических величин так, что внутри каждого множества коэффициенты корреляции между величинами равны 0, первые координаты каждого множества имеют максимальную корреляцию, вторые координаты имеют наибольшую корреляцию из оставшихся координат и т.д. (упорядоченные т. о. корреляции называются каноническими). Последний метод указывает максимальную корреляцию линейных функций от двух групп случайных компонент вектора наблюдения. Выводы методов главных компонент и канонических корреляций помогают понять структуру изучаемой многомерной совокупности. Сходным целям служит и Факторный анализ, в схеме которого предполагается, что компоненты случайных векторов Xj явлются линейными функциями от некоторых ненаблюдаемых факторов, подлежащих изучению. В рамках С. а. м. рассматривается и проблема дифференциации двух или большего числа совокупностей по результатам наблюдений. Одна часть проблемы заключается в том, чтобы на основе анализа выборок из нескольких совокупностей отнести новый элемент к одной из них (дискриминация), другая - в том, чтобы внутри совокупности разделить элементы на группы, в определённом смысле максимально отличающиеся друг от друга.

Лит.: Андерсон Т., Введение в многомерный статистический анализ, пер. с англ., М., 1963; Kendall М. G., Stuart А., The advanced theory of statistics, v. 3, L., 1966; Dempster A. P., Elements of continuons multivariate analysis, L., 1969.

А. В. Прохоров.

Статистический последовательный анализ         
Последовательный статистический анализ
Статистический последовательный анализ — раздел математической статистики, изучающий статистические методы, основанные на последовательной выборке, формируемой в ходе статистического эксперимента. Наблюдения производятся по одному (или, более общим образом, группами) и анализируются в ходе самого эксперимента с тем, чтобы на каждом этапе решить, требуются ли ещё наблюдения (решение о продолжении эксперимента) или наблюдений уже достаточно (решение об остановке эксперимента). Когда эксперимент остановлен, заключительное статистическое решение пр�
Статистический ансамбль         
Ансамбль статистический

совокупность сколь угодно большого числа одинаковых физических систем многих частиц ("копий" данной системы), находящихся в одинаковых макроскопических состояниях; при этом микроскопические состояния системы могут принимать все возможные значения, совместимые с заданными значениями макроскопических параметров, определяющих её макроскопическое состояние. Примеры С. а. - энергетически изолированные системы при заданном значении полной энергии (Микроканонический ансамбль), системы в контакте с термостатом заданной температуры (Канонический ансамбль), системы в контакте с термостатом и резервуаром частиц (большой канонический ансамбль). С. а. - основное понятие статистической физики (См. Статистическая физика), позволяющее применить методы теории вероятностей.

Wikipédia

Статистика

Стати́стика — отрасль знаний, наука, в которой излагаются общие вопросы сбора, измерения, мониторинга, анализа массовых статистических (количественных или качественных) данных и их сравнение; изучение количественной стороны массовых общественных явлений в числовой форме.

Статистик — специалист по статистике.

Слово «статистика» происходит от латинского status — состояние дел. В науку термин «статистика» ввёл немецкий учёный Готфрид Ахенвалль в 1746 году, предложив заменить название курса «Государствоведение», преподававшегося в университетах Германии, на «Статистику», положив тем самым начало развитию статистики как науки и учебной дисциплины. Несмотря на это, статистический учёт вёлся намного раньше: проводились переписи населения в Древнем Китае, осуществлялось сравнение военного потенциала государств, вёлся учёт имущества граждан в Древнем Риме и тому подобное. Статистика разрабатывает специальную методологию исследования и обработки материалов: массовые статистические наблюдения, метод группировок, средних величин, индексов, балансовый метод, метод графических изображений, кластерный, дискриминантный, факторный и компонентный анализы, оптимизацию и другие методы анализа статистических данных.